

 Navigation

 	
 index

 	
 next |

 	Hoodospel alpha documentation

Welcome to Hoodospel’s documentation!

Contents:

	Language syntax
	Top-level syntax

	Command arguments

	Expression evaluation

	Pattern syntax

	Messages

	Hoodospel commands
	Block commands

	Non-block commands

	Hoodospel functions

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Nikolay Pavlov.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Hoodospel alpha documentation

Language syntax

Top-level syntax

Hoodospel source code is a sequence of commands separated by newlines. Each
command consists of a command name followed by a sequence of
argument tokens followed by a command prefix
with argument tokens which are used to specify more then one
command argument. Both first and prefixed arguments are generally optional.

Between command name, first arguments, prefixes and prefix arguments there may
be whitespaces (tabs and spaces). They may also precede command.

command ::= command-name (argument+)? (prefix argument*)*

Both command prefixes and command name are non-empty sequences of latin capital
letters and underscores starting with a capital letter.

prefix ::= [A-Z] [A-Z_]*
command-name ::= prefix

Hoodospel also supports comments. Comment may be started at any place where some
token is expected. Comments are identified by preceding hash character.

comment ::= "#" .*

There are eight kind of tokens which may form an argument: variables, numbers, single-quoted, double-quoted,
plain and figure braces
strings, functions and parenthesis expression.

argument ::= variable | number | string | function | parenthesis_expr
string ::= single-quoted-string
 | double-quoted-string
 | plain-string
 | figure-braces-string

	Variable is a sigil followed by a non-empty sequence of latin letters, digits
and underscores. Two sigils are supported: $ indicates environment
variable, & indicates hoodospel variable.

variable ::= hoodospel-variable | env-variable
hoodospel-variable ::= "&" varname
environment-variable ::= "$" varname
varname ::= [a-zA-Z0-9_]+

	Numbers start with either a digit or a sign: _ for negative numbers and
+ for positive numbers. There must be at least one digit in number.

number ::= ("_" | "+")? [0-9]+

	Single-quoted strings are sequences of characters starting and ending with
a single quote. To escape a single quote you should double it. No other
escapes are possible.

single-quoted-string ::= "'" ([^'] | "''")* "'"

	Double-quoted strings are sequences of characters starting and ending with
a double quote. The following escape sequences are accepted: \xXX (but not
\x00), \uXXXX (but not \u0000), \UXXXXXXXX (but not
\U00000000), \\, \", \r, \n, \t.

Meaning of the escape sequences:

	Sequence
	Meaning

	\xXX
	Byte 0xXX.

	\uXXXX
	Unicode character U+XXXX

	\UXXXXXXXX
	Unicode character U+XXXXXXXX

	\\
	Backslash

	\"
	Double quote

	\r
	Carriage return (0x0D)

	\n
	Newline (0x0A)

	\t
	Tab (0x09)

double-quoted-string ::= "\"" ([^"\\] | escape-sequence)* "\""
escape-sequence ::= "\\x" (hex-digit x 2)
 | "\\u" (hex-digit x 4)
 | "\\U" (hex-digit x 8)
 | "\\" [\\"rnt]

	Plain strings start with either a unicode character, a lowercase latin letter,
a back or forward slash, a dot or a dash. Following characters are considered
a part of plain string as long as they are not whitespace characters,
parenthesis, brackets or figure braces.

plain-string ::= [a-z/\\.\-] [^\[\]{}() \t]*

	There is a special kind of plain strings: figure braces strings that contain
only figure braces.

figure-braces-string ::= "{"+ | "}"+

	Functions are just like prefixes, but unlike them functions
start with a colon:

function ::= ":" [A-Z] [A-Z_]*

	There are also parenthesis expressions:

parenthesis_expr ::= "(" argument* ")"

Command arguments

Different commands accept different arguments. There are kinds of arguments:

	Lval arguments designate arguments which may be assigned to. Rlval arguments
designate existing variables which may be assigned to. Both always contain
a single variable token.

	Empty arguments are for command prefixes. They designate that prefix does not
accept any arguments: only the presence of the prefix matters.

	Expression arguments are the only ones that may contain more then one token.
In fact they may contain any number of argument tokens. Note
that parenthesis in parenthesis expressions must be
balanced.

	Pattern is an expression which must result in a string
value treated like described in pattern syntax
section.

There is no difference between expressions and patterns from the parser point
of view.

	Message is an expression which must result in a string
value followed by other values treated like described in messages section.

There is no difference between expressions and messages from the parser point
of view.

	Version argument is a single token: a single-quoted string looking like
'M', 'M.m' or 'M.m.p' (where M stands for major version
number, m stands for minor version number and p stands for patch
level).

Expression evaluation

Expressions are written in a reverse polish notation. They are processed as
following: evaluator processes tokens one by one.

	Parenthesis tokens are mostly ignored (but checked
for being balanced).

	Various string tokens push single string value to the stack.

	Number tokens push integer value to the stack.

	Variable tokens put variable value onto the stack.

	Function tokens pop some values from the stack, process them
using given function and push the result onto the stack.

Some functions referenced by function tokens take fixed number
of arguments, in this case this predefined number of arguments is popped from
the stack. But there are also functions with variable number of arguments (only
up to ten arguments are supported). In this case top value in the stack defines
number of arguments that will be popped from the stack. Supported numbers: any
non-negative integer, any string that will take all values on the stack be
function arguments and }, }}, }}} and so on string which will make
evaluator process the stack until corresponding {, {{, {{{ and so on
respectively is found. E.g. the following constructs are the same:

PRINT MESSAGE (abc def ghi / 4 JOIN)
PRINT MESSAGE (abc def ghi / all JOIN)
PRINT MESSAGE ({ abc def ghi / } JOIN)
PRINT MESSAGE ({{ abc def ghi / }} JOIN)

All will print abc/def/ghi.

Pattern syntax

Hoodospel uses ERE-like patterns. The following metacharacters are supported:

Single atoms:

	.

	Matches any character except for newline.

	[…], [^…]

	Collections: matches any ([…] form) or none ([^…] form) of the
characters from the collection.

	(…)

	Capturing groups. You may specify up to ten of them.

	^

	Start of the line. Zero-width.

	$

	End of the line. Zero-width.

	\…

	Escape sequence. Escape followed by any of the metacharacters matches
this metacharacter literally. Other supported escapes:

	Escape
	Meaning

	\xXX
	Byte 0xXX, except for x00: it is not supported.

	\e
	Escape.

	\n
	Newline character.

	\r
	Carriage return character.

	\t
	Tab character.

	\b
	Backslash character.

Note

anything else is undefined

Quantifiers:

	{N}, {N,}, {N,M}

	Matches from N to M occurences of preceding atom. First form matches
exactly N (M=N), second form matches N or more (M=∞).

	*

	Matches zero or more occurences of preceding atom.

	+

	Matches one or more occurence of preceding atom.

	?

	Matches zero or one occurences of preceding atom.

Other:

	re1|re2

	Branch: matches either re1 or re2.

Messages

Messages are strings in a printf-like format. That is regular text interleaved
with %{flags}{conversion} atoms.

Supported flags (they must be given in order below):

	+

	For numbers: prepend + sign to positive numbers.

For strings: ignored.

	-

	Left-align the converted value. Default is right alignment. Only useful
if field width was specified.

	#

	Convert the value to alternate form. Only meaningful for x or
X (makes it prepend 0x to the result),
o (makes it prepend additional zero unless
first resulting character was already zero), e or
E, f, g or G
(makes it print decimal point even if no digits follow it).

	0

	Pad value with zeroes instead of spaces.

	N or *

	Specifies field width. N is a sequence of decimal digits not
starting with 0. If * is specified then width is taken from the
next argument.

	.N or .*

	Specifies precision. For d, i or u, x
or X and o this
specifies minimal number of digits printed, for e or
E and f this specifies the number of digits to
appear after the radix character, for g or
G this specifies the maximum number of
significant digits and for s this specifies
the maximum number of characters.

Supported conversions:

	u, i, d

	Integer argument is converted to decimal notation (signed in case of
%i and %d). Behavior is undefined when trying to use %u for
negative integers.

	o

	Integer is converted to octal notation. Behavior is undefined when
trying to convert negative integers.

	x or X

	Integer is converted to hexadecimal notation. If X is used then
hexadecimal digits A till F are capitalized otherwise they are
printed in lower case. Behavior is undefined when trying to convert
negative integers.

	e or E

	Number is converted to [-]A.Be±C scientific notation. If E is
used then capital letter E is used for the exponent, otherwise e
is used.

	f

	Number is converted to [-]A.B decimal notation.

	g or G

	Number is converted to either scientific notation or decimal notation depending on its value. G uses E
for scientific notation.

	s

	String conversion: embeds given string.

 Copyright 2014, Nikolay Pavlov.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Hoodospel alpha documentation

Hoodospel commands

Block commands

IF expr [OPERATOR expr]

commands

ELSE_IF expr [OPERATOR expr]

commands

ELSE

commands

END_IF

Conditional execution block. If IF is used without any suffixes (without
OPERATOR part) then its argument is considered true as long as it is not
empty (for strings) and not zero (for numbers). In any case all of the
expressions must leave only one value in the stack.

Supported operators:

	Operator
	Arguments
	Is true if first … the second

	IS
	string, string
	is identical to

	IS_NOT
	string, string
	is different from

	MATCHES
	string, pattern
	matches

	NOT_MATCHES
	string, pattern
	does not match

	EQ
	number, number
	is equal to

	NE
	number, number
	is not equal to

	LE
	number, number
	is lesser then or equal to

	GE
	number, number
	is greater then or equal to

	LT
	number, number
	is lesser then

	GT
	number, number
	is greater then

ELSE_IF and ELSE sections are optional, there also may be no
commands after each of the block headers (IF, ELSE_IF, ELSE).
Commands after block header are executed if it is the first block header in
a sequence whose condition is true. Commands after ELSE will be executed
if there are no block headers with condition that is true.

Commands after each block header may also start their own subblocks.

Non-block commands

PRINT LEVEL message

Print message with the given level. Given expression may leave more then one
value in the stack, in this case the whole stack will be passed to printf
meaning that first value will be a format string and the following values
are being inserted in this string according to it.

cmd:PRINT:message_level option controls which
messages are output and which are not.

Supported levels (in order of significance): DEBUG_INFO, MESSAGE,
WARNING, ERROR.

ABORT message

Abort execution. This will abort with a error ID aborted and message
constructed from expr like in PRINT command.

VERSION version

Check whether current hoodospel version matches given one. It is considered
matching if current major version number is identical to requested one and
the following numbers are less then or equal to current. If some number is
missing it is considered to be zero. E.g.

	Current
	Requested
	Resolution

	1.0.0
	'0.0.0'
	Fail (major version numbers differ)

	1.0
	'1.2'
	Fail (zero is lesser then two)

	1.0.2
	'1.0.3'
	Fail (two is lesser then three)

	1.0
	'1.0'
	Success

	1.1
	'1.0'
	Success (one is greater then zero)

	1.0.0
	'1.0'
	Success (missing number is zero)

	1.0
	'1.0.0'
	Success (missing number is zero)

RUN_SHELL expr
[OUTPUT_TO var]
[INPUT_STRING expr]
[EXPECTING_EXIT_CODE expr]
[IGNORE_EXIT_CODE]

Run shell command. Expression given as a first argument is expected to leave
more then one string in stack: RUN_SHELL (echo abc) will run command
echo with argument abc, but RUN_SHELL "echo abc" will run
command echo abc with no arguments (and most likely fail).

This command will fail if launched command exits with code different from
zero. EXPECTING_EXIT_CODE and IGNORE_EXIT_CODE prefixes override
this behavior: first will make hoodospel expect fail if exit code is
different from the one from the prefix argument, first will make hoodospel
not fail regardless of exit code.

If OUTPUT_TO string was specified then launched command output will be
assigned to given variable.

If INPUT_STRING string was specified then launched command will receive
given string in the stdin.

CHANGE_DIRECTORY_TO expr

Change current directory to the given one.

SET var TO expr

Set given variable value to given value. Expression must leave only one
value in the stack. Can also be used to set environment variables, but in
this case expression must leave only one string value.

DELETE TYPE expr

Delete given filesystem object. TYPE may be FILE, DIRECTORY and
EMPTY_DIRECTORY. Expression must leave exactly one string value in the
stack.

COPY TYPE expr (TO expr |
TO_DIRECTORY expr | HERE)

MOVE TYPE expr (TO expr |
TO_DIRECTORY expr | HERE)

Copy or move given filesystem object to given location. TYPE may be either
FILE or DIRECTORY, other prefixes specify target location:

	Prefix
	Description

	TO
	COPY FILE a TO b copies file contents to file b

	TO_DIRECTORY
	COPY FILE a TO_DIRECTORY d copies file contents to d/a

	HERE
	COPY FILE d/a HERE copies file contents to file a

In all cases expressions must leave exactly one string value in the stack.

CREATE_DIRECTORY expr [RECURSIVE]

Create directory with given name. If RECURSIVE prefix is given then
parent directories are also created if necessary.

SUBSTITUTE pattern WITH expr
IN var
[IGNORE_CASE] [REPLACE_ALL]

Substitute given pattern with given replacement string. Operates on a given
variable, result is recorded back into it. IGNORE_CASE flag makes regex
engine ignore case, REPLACE_ALL makes hoodospel replace all occurences
of a pattern (it replaces only the first by default).

WRITE expr TO expr
[TEMP_SUFFIX expr]

Write given string to given file. When TEMP_SUFFIX expression is given then
in place of writing directly to a given file it will write to
TO.TEMP_SUFFIX file and then rename file that was written to to
TO.

READ expr TO var

Write given file contents to given variable.

QUESTION message RESULT_TO var
TYPE
[RESULT_FROM expr]
[DEFAULT expr]

Ask user a question. The result is recorded to the given variable. Question
is processed in the following order (assuming key is the first value in
message stack):

	Check out whether there is answer file in the current directory:
.hoodospel.ans. If there is one then it should have format
“key \t string”. If there is one and it contains key then
RESULT_TO variable is populated with the given answer. This answer is
processed according to TYPE.

	Check out whether RESULT_FROM expression is not empty. If it is not it is
proccessed according to given TYPE and used to populate RESULT_TO
variable.

	Check out whether cmd:QUESTION:use_default option is
true. If it is then DEFAULT is used to populate the variable. DEFAULT is
processed according to TYPE as well.

	Last, if DEFAULT was not specified and other variants failed user is
asked to answer the question. User answer is processed according to TYPE.

Possible types:

	Type
	Description

	BOOLEAN
	Transforms “yes”, “y”, “true” and “1” strings to 1 and
“no”, “n”, “false” and “0” strings to 0.

	STRING
	Takes string unmodified.

If cmd:QUESTION:write_answers option is true then
this command also writes answer to .hoodospel.ans file.

 Copyright 2014, Nikolay Pavlov.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Hoodospel alpha documentation

Hoodospel functions

	type arg :EXISTS

	If entity of the given type exists pushes one to the stack. Otherwise pushes
zero. Possible types:

	Type
	Description

	file
	File. VimL implementation checks file for being readable.

	directory
	Directory.

	command
	Executable. I.e. command false :EXISTS checks whether there
is false command somewhere in $PATH.

	:CURRENT_DIRECTORY

	Pushes full path to the current directory to the stack.

	:SEPARATOR

	Pushes directory separator to the stack (i.e. / on *nix systems and
\ on windows).

	str... separator numargs :JOIN

	Joins given strings using given separator and pushes result to the stack.
Function with variable number of arguments: abc
def / 3 :JOIN will push abc/def to the stack, just like { abc def
/ } :JOIN will.

	:PLATFORM

	Pushes name of the platform hoodospel is running on. Possible outputs:
qnx, vms, os2, amiga, beos, mac, windows,
unix, other.

	:OS_NAME

	Pushes less specific name of the platform hoodospel is running on. Possible
outputs: posix, nt, os2, other.

	str :SHELL_SPLIT

	Pops one value from the stack, splits it on unescaped spaces, unescapes
(replaces all \. with .) and pops resulting values back onto the
stack.

 Copyright 2014, Nikolay Pavlov.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Hoodospel alpha documentation

Index

 Copyright 2014, Nikolay Pavlov.
 Created using Sphinx 1.3.1.

 _static/up-pressed.png

search.html

 Navigation

 		
 index

 		Hoodospel alpha documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Nikolay Pavlov.
 Created using Sphinx 1.3.1.

_static/up.png

_static/comment-bright.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/minus.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

